post 55555555

Seven Leafcutter ant workers of various castes (left) and two Queens (right)
In the colonies of a few ant species, there are physical castes—workers in distinct size-classes, called minor, median, and major workers.

Often, the larger ants have disproportionately larger heads, and correspondingly stronger mandibles. Such individuals are sometimes called “soldier” ants because their stronger mandibles make them more effective in fighting, although they still are workers and their “duties” typically do not vary greatly from the minor or median workers. In a few species, the median workers are absent, creating a sharp divide between the minors and majors.

[45] Weaver ants, for example, have a distinct bimodal size distribution.[46][47] Some other species show continuous variation in the size of workers. The smallest and largest workers in Pheidologeton diversus show nearly a 500-fold difference in their dry-weights.[48] Workers cannot mate; however, because of the haplodiploid sex-determination system in ants, workers of a number of species can lay unfertilised eggs that become fully fertile, haploid males.

The role of workers may change with their age and in some species, such as honeypot ants, young workers are fed until their gasters are distended, and act as living food storage vessels. These food storage workers are called repletes.

[49] For instance, these replete workers develop in the North American honeypot ant Myrmecocystus mexicanus. Usually the largest workers in the colony develop into repletes; and, if repletes are removed from the colony, other workers become repletes, demonstrating the flexibility of this particular polymorphism.[50] This polymorphism in morphology and behaviour of workers initially was thought to be determined by environmental factors such as nutrition and hormones that led to different developmental paths; however, genetic differences between worker castes have been noted in Acromyrmex sp.[51] These polymorphisms are caused by relatively small genetic changes; differences in a single gene of Solenopsis invicta can decide whether the colony will have single or multiple queens.[52] The Australian jack jumper ant (Myrmecia pilosula) has only a single pair of chromosomes (with the males having just one chromosome as they are haploid), the lowest number known for any animal, making it an interesting subject for studies in the genetics and developmental biology of social insects.[53][54]

Meat eater ant nest during swarming
The life of an ant starts from an egg. If the egg is fertilised, the progeny will be female diploid; if not, it will be male haploid. Ants develop by complete metamorphosis with the larva stages passing through a pupal stage before emerging as an adult. The larva is largely immobile and is fed and cared for by workers. Food is given to the larvae by trophallaxis, a process in which an ant regurgitates liquid food held in its crop. This is also how adults share food, stored in the “social stomach”. Larvae, especially in the later stages, may also be provided solid food, such as trophic eggs, pieces of prey, and seeds brought by workers.

The larvae grow through a series of four or five moults and enter the pupal stage. The pupa has the appendages free and not fused to the body as in a butterfly pupa.[55] The differentiation into queens and workers (which are both female), and different castes of workers, is influenced in some species by the nutrition the larvae obtain. Genetic influences and the control of gene expression by the developmental environment are complex and the determination of caste continues to be a subject of research.[56] Winged male ants, called drones, emerge from pupae along with the usually winged breeding females. Some species, such as army ants, have wingless queens. Larvae and pupae need to be kept at fairly constant temperatures to ensure proper development, and so often, are moved around among the various brood chambers within the colony.[57]

A new worker spends the first few days of its adult life caring for the queen and young. She then graduates to digging and other nest work, and later to defending the nest and foraging. These changes are sometimes fairly sudden, and define what are called temporal castes. An explanation for the sequence is suggested by the high casualties involved in foraging, making it an acceptable risk only for ants who are older and are likely to die soon of natural causes.[58][59]

Ant colonies can be long-lived. The queens can live for up to 30 years, and workers live from 1 to 3 years. Males, however, are more transitory, being quite short-lived and surviving for only a few weeks.[60] Ant queens are estimated to live 100 times as long as solitary insects of a similar size.[61]

Ants are active all year long in the tropics, but, in cooler regions, they survive the winter in a state of dormancy or inactivity. The forms of inactivity are varied and some temperate species have larvae going into the inactive state, (diapause), while in others, the adults alone pass the winter in a state of reduced activity.[62]


Ants mating
A wide range of reproductive strategies have been noted in ant species. Females of many species are known to be capable of reproducing asexually through thelytokous parthenogenesis.[63] Secretions from the male accessory glands in some species can plug the female genital opening and prevent females from re-mating.[64] Most ant species have a system in which only the queen and breeding females have the ability to mate. Contrary to popular belief, some ant nests have multiple queens, while others may exist without queens. Workers with the ability to reproduce are called “gamergates” and colonies that lack queens are then called gamergate colonies; colonies with queens are said to be queen-right.[65]

Drones can also mate with existing queens by entering a foreign colony. When the drone is initially attacked by the workers, it releases a mating pheromone. If recognized as a mate, it will be carried to the queen to mate.[66] Males may also patrol the nest and fight others by grabbing them with their mandibles, piercing their exoskeleton and then marking them with a pheromone. The marked male is interpreted as an invader by worker ants and is killed.[67]